Vertex and edge PI indices of Cartesian product graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vertex and edge PI indices of Cartesian product graphs

The Padmakar-Ivan (PI) index of a graph G is the sum over all edges uv of G of the number of edges which are not equidistant from u and v. In this paper, the notion of vertex PI index of a graph is introduced. We apply this notion to compute an exact expression for the PI index of Cartesian product of graphs. This extends a result by Klavzar [On the PI index: PI-partitions and Cartesian product...

متن کامل

A note on vertex-edge Wiener indices of graphs

The vertex-edge Wiener index of a simple connected graph G is defined as the sum of distances between vertices and edges of G. Two possible distances D_1(u,e|G) and D_2(u,e|G) between a vertex u and an edge e of G were considered in the literature and according to them, the corresponding vertex-edge Wiener indices W_{ve_1}(G) and W_{ve_2}(G) were introduced. In this paper, we present exact form...

متن کامل

adjacent vertex distinguishing acyclic edge coloring of the cartesian product of graphs

‎let $g$ be a graph and $chi^{prime}_{aa}(g)$ denotes the minimum number of colors required for an‎ ‎acyclic edge coloring of $g$ in which no two adjacent vertices are incident to edges colored with the same set of colors‎. ‎we prove a general bound for $chi^{prime}_{aa}(gsquare h)$ for any two graphs $g$ and $h$‎. ‎we also determine‎ ‎exact value of this parameter for the cartesian product of ...

متن کامل

Some results on vertex-edge Wiener polynomials and indices of graphs

The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...

متن کامل

Edge-coloring Vertex-weightings of Graphs

Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2008

ISSN: 0166-218X

DOI: 10.1016/j.dam.2007.08.041